If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-160x+50=0
a = 9; b = -160; c = +50;
Δ = b2-4ac
Δ = -1602-4·9·50
Δ = 23800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23800}=\sqrt{100*238}=\sqrt{100}*\sqrt{238}=10\sqrt{238}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-10\sqrt{238}}{2*9}=\frac{160-10\sqrt{238}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+10\sqrt{238}}{2*9}=\frac{160+10\sqrt{238}}{18} $
| 7v+1+3=-9-6v | | 1.4x=9.66 | | -12-5n=-8-6n | | 20/7=17/x | | 4w^2-12w-9=0 | | X-1=6-2x+2x | | 4y−5/3+6=51 | | y+21=15 | | -13+7b=-3+5b | | 5(y-1)-y=3(y-1)+7 | | 0.40x+0.05(14-x)=0.10(-14) | | 12(2x-1)=8(2x+1)+28 | | 1+k=1+5k | | 5(k+8)-8=47 | | -2x-3=13-2x-4x | | -30=-p^2+p | | -x-7=x+5 | | 6(3x-2)-3(4x-55)=33 | | 3x^2-10x^2+x+6=0 | | 13+x=7x-3-8x | | 3x^2+x=2x+6 | | -3(-7u+8)-7u=4(u-3)-6 | | 3x-7=6x+5-3x | | h^2+2h-48=0 | | -3+3+8r+r=5r-8r | | 9(d-6)=-9 | | 0=9x^2-160x+50 | | (5p-4)/10=4/5 | | N+16=4n-n | | -2.4=y/8+10.4 | | 6(x+4)=6(x+4) | | 2x+15=385/x+1 |